Synthesis of chiral intermediates of quinine alkaloids and

 (+)-dihydroantirhineM asataka Ihara,* N obuaki T aniguchi and Keiichiro Fukumoto

P harmaceutical Institute, Tohoku U niversity, A obayama, Sendai 980-77, J apan
(4R ,5R)-2-E thoxy-5-ethyl-4-methoxycarbonylmethyl-3,4,5,6-tetrahydro-2H -pyran 3, which has been enantioselectively prepared, is converted into the cis-substituted lactone 11 by treatment with propanedithiol in the presence of boron trifluoride-diethyl ether. The product 11 is converted into the synthetic intermediate 7 of quinine alkaloids and the synthetic precursor 19 of (+)-dihydroantirhine 10.

Previously, we achieved the stereocontrolled synthesis of the trans-substituted cyclic acetal $\mathbf{3}$ by cyclisation of the bromoacetal 2, carried out by using organostannane ${ }^{1}$ or nickel(II)catalysed electroreduction (Scheme 1). ${ }^{2}$ The substrate 2 was

Scheme 1
prepared from the chiral half ester $\mathbf{1}$, which was diastereoselectively obtained through the crystallisation-induced asymmetric transformation. ${ }^{3}$ The product 3 was converted into (-)protoemetine 4, (-)-protoemetinol 5^{1} and (- -dihydrocorynantheol $6 .{ }^{4}$ We have conducted further studies to demonstrate the usefulness of $\mathbf{3}$ in alkaloid synthesis and describe here synthesis of quinine alkaloids, which are important in malerial therapy, and an indole alkaloid, (+)-dihydroantirhine. ${ }^{5}$

It was considered that the cis-substituted piperidine 7, the synthetic intermediate of (+)-hydrocinchonine 8 and (-)hydrocinchonidine $9,{ }^{6}$ could be synthesised by insertion of a nitrogen atom between the alkoxy function and the ester func-

tion of $\mathbf{3}$ (Scheme 2). F urthermore, the introduction of a nitrogen atom between the acetal function and the ester function would lead to (+)-dihydroantirhine 10, isolated from A spidosperma marcgrarianum. ${ }^{7}$
On the basis of the above considerations, the cleavage of the cyclic acetal function of $\mathbf{3}^{1,2}$ was first examined. Treatment of 3 with propane-1,3-dithiol in the presence of a large excess of boron trifluoride-diethyl ether caused the formation of the thioacetal function as well as the lactone ring to give 11 (99\%) (Scheme3). Thecis-substituted lactone 11 was heated with benzylamine in toluene to afford the amide 12 (85\%). Transformation of $\mathbf{1 2}$ into the lactam $\mathbf{1 3}$ was carried out in 73% overall yield in two steps; mesylation followed by cyclisation using potassium hydride and 18 -crown- 6 . Reaction of $\mathbf{1 3}$ with methyl iodide and sodium hydrogen carbonate in a mixture of acetonitrile and water ${ }^{8}$ formed the corresponding aldehyde, which was reduced with lithium aluminium hydride in hot tetrahydrofuran. The piperidine derivative 14 was obtained in 70% overall yield in two steps. Direct conversion of the N-benzyl group of $\mathbf{1 4}$ into the carbamategroup failed due to the presence of the hydroxy function. Therefore, the N-benzyl group of 14 was removed by hydrogenolysis using 10% palladium on activated carbon and ammonium formate ${ }^{9}$ and the product was treated with benzyl chloroformate in the presence of sodium hydrogen carbonate in a mixture of benzene and water. The carbamate 15, produced in 61% overall yield, was transformed in 84% overall yield into the ester 7 by Jones oxi-

3

14

11

12

15

Scheme 3 Reagents and conditions: i, $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; ii, $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$, heat; iii, $\mathrm{M} \mathrm{sCl}, \mathrm{Et}_{3} \mathrm{~N}$; iv, K H, 18-crown-6; v, M el, $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{MeCN}, \mathrm{NaHCO}_{3}$; vi, $\mathrm{LiAlH}_{4} ;$ vii, 10% Pd-C, $\mathrm{HCO}_{2} \mathrm{NH}_{4}$; viii, $\mathrm{ClCO}_{2}-$ $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{NaHCO}_{3}$; ix, Jones oxidation; x, EtOH, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
dation followed by esterification. The racemate of $\mathbf{7}$ had been converted into (+)-hydrocinchonine 8 and (-)-hydrocinchonidine 9 by us. ${ }^{6}$

N ext, the transformation of the cis-substituted lactone $\mathbf{1 1}$ into (+)-dihydroantirhine 10^{7} was investigated. Heating 11 with tryptamine in hot toluene provided the amide 16 in 91% yield (Scheme 4). The optical purity, >98\% ee, was established from the 500 M H z N M R spectrum of its M osher ester 17. Protection of the hydroxy group of 16 with a tert-butyldimethylsilyl group afforded 18 (85\%). The spectral properties of synthetic compound 18 were identical with those of the authentic compound. ${ }^{10}$ The silyl ether 18 has been transformed into (+)dihydroantirhine $\mathbf{1 0}$ via 19 by Suzuki and co-workers, ${ }^{10}$ but in our route the tetracyclic compound 19 was directly synthesised from 16 by treatment with methyl iodide in a mixture of acetonitrile and water. ${ }^{8}$ A mixture of 19 and its epimer was obtained in 64% yield in a ratio of $7: 1$. The desired compound 19 would be stereoselectively produced by ring closure through conformation 20 of the imine. Spectral data of 19, $[a]_{0}^{30}-41.3$ $\left(\mathrm{CHCl}_{3}\right)\left[\right.$ lit. $\left.{ }^{10}\left[{ }^{10}\right]_{0}^{25}-21.7\left(\mathrm{CHCl}_{3}\right)\right]$, were consistent with reported values. ${ }^{10,11}$
Thus, the enantioselective syntheses of the intermediates 7 and 19 of quinine alkaloids and (+)-dihydroantirhine have been accomplished starting with 3.

Scheme 4 Reagents and conditions: i, tryptamine, heat; ii, M TPAOH, DCC, DMAP; iii, TBDMSCI, Et ${ }_{3}$ N, DMAP; iv, see ref. 10; v, M el, $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN}$

Experimental

General

M ps were measured on a Yanako micro melting-point apparatus and are uncorrected. IR Spectra wererecorded on a J A SCO IR-Report 100 spectrophotometer. N M R Spectra were measured for CDCl_{3} solutions with H itachi R-1200 and JNM-GX500 spectrometers. Chemical shifts are recorded relative to internal SiM_{4}; J values are given in Hz . M ass spectra were taken on JEOL-JMS-O1SG-2 and JEOL-DX-300 spectrometers. Optical rotations were determined on JA SCO-DIP-340 and HORIBA SEPA-300 polarimeters. HPLC was carried out using a Gilson system and monitored by UV absorptions and refractive-index measurements.
All reactions were carried out under a positive atmosphere of dry Ar. Solvents were distilled prior to use: tetrahydrofuran, benzene and toluene were distilled from sodium-benzophenone, while dichloromethane was distilled from calcium hydride and stored over $4 \AA$ molecular sieves. The organic extracts were dried over sodium sulfate unless otherwise indicated and the solvent was removed by rotary evaporation under reduced pressure. A Il new compounds described in the Experimental section were homogeneous on TLC and HPLC.

(-)-(4S,5R)-4-[(1,3-D ithian-2-yl)methylf5-ethyl-3,4,5,6-2H -tetrahydropyran-2-one 11

To a solution of the acetal $\mathbf{3}^{1,2}(272 \mathrm{mg}, 1.12 \mathrm{mmol})$ and propane-1,3-dithiol ($0.169 \mathrm{~cm}^{3}, 1.69 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 cm^{3}) cooled with ice, was added boron trifluoride-diethyl ether ($0.553 \mathrm{~cm}^{3}, 4.50 \mathrm{mmol}$). A fter the mixture had been stirred for 2.5 h at room temperature, it was directly subjected to chromatography on silica gel. Elution with ethyl acetate-hexane (3:7) provided the lactone 11 ($290 \mathrm{mg}, 99 \%$) as an oil. Recrystallisation of this from benzene-diisopropyl ether-hexane gave prisms, mp $65-66^{\circ} \mathrm{C}$ (Found: C, 55.2; H, 7.65; S, 24.3. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires C, 55.35; H, 7.75; S, 24.6\%); [a] $]_{\mathrm{D}}^{23}-1.42$ (c $\left.0.70, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1730$ (lactone); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz})$ 1.01 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.27-1.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Me}$), $1.68(1 \mathrm{H}$, ddd, J 14.5, 8.8 and 6.2 , C H CH HCH), 1.83(1 H , ddd, $\mathrm{J} 14.5,8.8$ and $5.0, \mathrm{CHCHHCH}), 1.80-1.93(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$, SCH ${ }_{2} \mathrm{CHH}$), 2.12-2.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHH}$), $2.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 17.2 and $8.2,3-\mathrm{H}), 2.43-2.51(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2$ and 6.0, 3-H), 2.81-2.95(4 H m, $2 \times$ SCH $\left._{2}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8$ and 6.2, CHS_{2}) and $4.28\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.9,6-\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 260\left(\mathrm{M}^{+}\right)$.

(-)-(3S,4R)-N -B enzyl-4-hydroxymethyl-3-[(1,3-dithian-2-yl)methyl]hexanamide 12

A mixture of the lactone $11(45.9 \mathrm{mg}, 0.176 \mathrm{mmol})$ and benzylamine ($0.058 \mathrm{~cm}^{3}, 0.528 \mathrm{mmol}$) in toluene ($1 \mathrm{~cm}^{3}$) was heated under reflux for 16 h after which it was evaporated. The residue was chromatographed on silica gel with methanol-chloroform ($1: 19$) as eluent to afford the amide 12 as an oil ($55.1 \mathrm{mg}, 85 \%$); $[a]_{0}^{26}-4.73\left(c 1.06, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440(\mathrm{~N} \mathrm{H}), 3380$ (OH) and 1650 (amide); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,5-\mathrm{M} \mathrm{e}$), 1.02-1.11 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.20-1.29 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.56-1.63 (1 H, m, 4-H), 1.72 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 14.4,7.5$ and $6.4, \mathrm{CHCHHCH}$), 1.76 (1 H , ddd, J 14.4, 8.7 and 6.4, CHCH HCH), 1.79-1.88 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHH}\right), 2.05-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHH}\right), 2.13(1 \mathrm{H}$, dd, J 14.1 and $5.5,2-\mathrm{H}$), 2.39 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.1$ and $7.9,2-\mathrm{H}$), 2.49-2.56 (1 H, m, 3-H), 2.74-2.86 ($4 \mathrm{H}, \mathrm{m}, 2 \times$ SCH 2), 3.39 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4$ and $8.7, \mathrm{OCHH}$), 3.58 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4$ and 4.6 , OCHH), 3.65-3.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), $4.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7$ and 6.9 , CHS_{2}), 4.37 and 4.43 (each 1 H , each dd, J each 15.0 and 5.7, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 6.70(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 5.7, \mathrm{NH})$ and $7.23-7.34(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 367.1645\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}_{2}\right.$ requires 367.1638).

(-)-(4S,5R)-N-B enzyl-4-[(1,3-dithian-2-yl)methyl]-5-ethylpiperidin-2-one 13

To a stirred solution of the amide $\mathbf{1 2}(99.2 \mathrm{mg}, 0.270 \mathrm{mmol})$ and triethylamine ($0.075 \mathrm{~cm}^{3}, 0.297 \mathrm{mmol}$) in dry benzene ($1 \mathrm{~cm}^{3}$) at $5^{\circ} \mathrm{C}$ was added methanesulfonyl chloride ($0.023 \mathrm{~cm}^{3}, 0.297$ $\mathrm{mmol})$. A fter the mixture had been stirred for 30 min at the same temperature it was diluted with benzene, washed with saturated aqueous sodium hydrogen carbonate and brine, dried and evaporated. A fter addition of dry benzene to the residue, the solvent was distilled off. To a suspension of potassium hydride (30% in oil; $310 \mathrm{mg}, 2.70 \mathrm{mmol}$) and 18-crown-6 (10 $\mathrm{mg}, 0.038 \mathrm{mmol}$) in dry dimethoxyethane ($5 \mathrm{~cm}^{3}$) cooled with ice was slowly added a solution of the above product in dry dimethoxyethane ($1 \mathrm{~cm}^{3}$). A fter the mixture had been stirred for 30 min at room temperature, it was partitioned between saturated aqueous ammonium chloride and dichloromethane. The organic layer was separated, washed with brine, dried and evaporated to give a residue. This was subjected to chromatography on silica gel. Elution with ethyl acetate-hexane (7:3) afforded the lactam 13 ($69.0 \mathrm{mg}, 73 \%$) as an oil, $[a]_{0}^{26}-26.8$ (c 1.26 , CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1638$ (lactam); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.79$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,5-\mathrm{CH}_{2} \mathrm{M}$ e), 1.16-1.36(2 H, m, 5-CH2), $1.60(1 \mathrm{H}$ ddd, J 15.1, 9.5 and 5.5, 4-CH H), $1.72(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 15.1,9.5$ and 4.1, 4-CHH), 1.74-1.82 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.82-1.92 ($1 \mathrm{H}, \mathrm{m}$, SCH ${ }_{2} \mathrm{CHH}$), 2.10-2.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHH}$), 2.32-2.39 (1 H , $\mathrm{m}, 4-\mathrm{H}), 2.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.6$ and $6.8,3-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{dd}$, $J 17.6$ and $6.3,3-\mathrm{H}), 2.79-2.95\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 12.5 and $8.0,6-\mathrm{H}), 3.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5$ and $4.8,6-\mathrm{H}), 4.07$ (1

H, dd, J 9.5 and 5.5, CH S $_{2}$), 4.49 and 4.66 (each 1 H , each d, J each 14.6, $\mathrm{NCH}_{2} \mathrm{Ph}$) and $7.22-7.34$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) $349.1542\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N} \mathrm{OS}_{2}\right.$ requires 349.1534$)$.
(+)-(3R,4S)-N-B enzyl-3-ethyl-4-(2-hydroxyethyl)piperidine 14 A mixture of the lactam 13 ($62.8 \mathrm{mg}, 0.018 \mathrm{mmol}$), methyl iodide ($0.560 \mathrm{~cm}^{3}, 9.0 \mathrm{mmol}$) and sodium hydrogen carbonate ($378 \mathrm{mg}, 4.50 \mathrm{mmol}$) in acetonitrile-water ($8: 1 ; 4.5 \mathrm{~cm}^{3}$) was stirred for 12 h at room temperature. A fter dilution with dichloromethane, the mixture was washed with brine, dried and evaporated to give the crude aldehyde; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1722$ (formyl) and 1628 (amide); $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 0.70-0.95\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2} \mathrm{Me}\right)$, $0.97-1.04\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.55-3.40(8 \mathrm{H}, \mathrm{m}), 4.43$ and 4.77 (each 1 H , each d, J each 14.4, NCH ${ }_{2} \mathrm{Ph}$), $7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and 9.76-9.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$)).

To a suspension of lithium aluminium hydride ($13.7 \mathrm{mg}, 0.36$ mmol) in dry tetrahydrofuran ($5 \mathrm{~cm}^{3}$) under reflux was added a solution of the above product in dry tetrahydrofuran ($2 \mathrm{~cm}^{3}$). A fter being heated for 23 h under reflux, the mixture was partitioned between 10% aqueous sodium hydroxide and dichloromethane. The organic layer was separated, dried and evaporated to afford a residue, which was chromatographed on silica gel. Elution with methanol-chloroform (1:19) yielded the amide 14 as an oil ($31.2 \mathrm{mg}, 70 \%$), $[a]_{0}^{26}+31.6$ (c $0.297, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3350(\mathrm{OH}) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.82(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4$, $\mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.22-1.31 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}$), 1.42-1.85 ($6 \mathrm{H}, \mathrm{m}$), 2.25$2.90(4 \mathrm{H}, \mathrm{m}, 2$ - and 6-CH2$), 3.53-3.83\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 7.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{ArH}), 7.34(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2,2 \times \mathrm{ArH})$ and $7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2,2 \times \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 247.1925\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$ requires 247.1936).

(+)-(3R,4S)-N -B enzylox ycarbony-3-ethyl-4-(2-hydroxyethyl)-

 piperidine 15A mixture of the amine 14 ($53.5 \mathrm{mg}, 0.216 \mathrm{mmol}$), 10% palladium on activated carbon (60 mg) and ammonium formate ($273 \mathrm{mg}, 4.33 \mathrm{mmol}$) in benzene ($2 \mathrm{~cm}^{3}$) was heated for 1 h under reflux. A fter dilution with benzene followed by filtration through Celite, the filtrate was washed with 10% aqueous sodium hydroxide, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated to afford the crude amine; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 0.70-1.05$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $1.05-$ $2.10(6 \mathrm{H}, \mathrm{m}), 2.30-3.20(6 \mathrm{H}, \mathrm{m})$ and $3.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2$, $\mathrm{CH}_{2} \mathrm{OH}$).
To a stirred mixture of the above product and sodium hydrogen carbonate ($54.4 \mathrm{mg}, 0.648 \mathrm{mmol}$) in benzene-water ($2: 1$; $5 \mathrm{~cm}^{3}$) was added benzyl chloroformate ($0.093 \mathrm{~cm}^{3}, 0.648 \mathrm{mmol}$). A fter the mixture had been stirred for 40 h at room temperature it was diluted with benzene, washed with water, dried and evaporated. Chromatography of the residue on silica gel with ethyl acetate-hexane ($1: 1$) as eluent provided the alcohol 15 as an oil ($38.7 \mathrm{mg}, 61 \%$), $[a]_{0}^{27}+9.9$ (c $0.31, \mathrm{CHCl}_{3}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3620 and $3460(\mathrm{OH})$ and 1680 (carbamate); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.80-$ $1.02\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 1.15-1.32\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.35-1.65$ ($6 \mathrm{H}, \mathrm{m}$), 1.75-1.86 ($1 \mathrm{H}, \mathrm{m}$), 2.90-3.12 ($2 \mathrm{H}, \mathrm{m}, 2$ - and 6-H), 3.63-3.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 3.82-4.07 ($2 \mathrm{H}, \mathrm{m}, 2$ - and 6-H), 5.09 and 5.14 (each 1 H , each d, J each $12.8, \mathrm{OCH}_{2} \mathrm{Ph}$) and 7.28-7.36 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) 291.1825 ($\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires 291.1835).

(+)-E thyl (3R,4S)-(N -benzyloxycarbonyl-3-ethyl-4-piperidyl)-

 acetate 7To a stirred solution of the alcohol $\mathbf{1 5}(7.8 \mathrm{mg}, 0.027 \mathrm{mmol})$ in acetone ($2 \mathrm{~cm}^{3}$) cooled with ice was added Jones reagent (0.017 $\mathrm{cm}^{3}, 0.11 \mathrm{mmol}$). A fter the mixture had been stirred for 40 min with ice cooling, it was treated with isopropyl alcohol $\left(0.5 \mathrm{~cm}^{3}\right)$, diluted with dichloromethane, washed with water, dried and evaporated. The residue was taken up into ethanol $\left(2 \mathrm{~cm}^{3}\right)$ to which concentrated sulfuric acid ($0.1 \mathrm{~cm}^{3}$) was added. A fter the mixture had been stirred for 20 h at room temperature it was poured into saturated aqueous sodium hydrogen carbonate cooled with ice and the mixture was thoroughly extracted with
dichloromethane The combined extracts were washed with water, dried and evaporated to give a residue, which was purified by silica gel chromatography. Elution with ethyl acetatehexane ($1: 5$) gave the ester 7 as an oil ($7.5 \mathrm{mg}, 84 \%$), $[a]_{o}^{26}+5.7$ (c $0.40, \mathrm{CHCl}_{3}$), the IR and ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectra and TLC behaviour of which were identical with those of the racemate of $7 .{ }^{6}$

(-)-(3S,4R)-3-[(1,3-D ithian-2-yl)methyl] 4-hydroxymethyl-N [2-(indol-3-yl)ethyl]hexanamide 16

A mixture of the lactone 11 ($38.4 \mathrm{mg}, 0.147 \mathrm{mmol}$) and tryptamine ($57.6 \mathrm{mg}, 0.295 \mathrm{mmol}$) in dry toluene ($1 \mathrm{~cm}^{3}$) was heated for 10 h under reflux. Thereaction mixture was then subjected to chromatography on silica gel. Elution with ethyl acetate-hexane (1:1) followed by ethyl acetate-hexane (4:1) gave the alcohol 16 as a pale yellow oil ($56.0 \mathrm{mg}, 91 \%$), $[a]_{0}^{23}-10.2$ (c $1.12, \mathrm{CHCl}_{3}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3470(\mathrm{NH}), 3420(\mathrm{OH})$ and 1640 (amide); δ_{H} $(500 \mathrm{M} \mathrm{Hz}) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 0.97-1.08(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 1.18-1.27 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $1.26(1 \mathrm{H}, \mathrm{br}$ s, OH), 1.57-1.62 (1 H m, 4-H), 1.67 (1 H, ddd, J $14.4,9.0$ and $7.2, \mathrm{~S}_{2} \mathrm{CH}$ CH H), 1.73 (1 H , ddd, J 14.4, 7.6 and $\left.5.7, \mathrm{~S}_{2} \mathrm{CHCHH}\right), 1.78-1.88(1 \mathrm{H}, \mathrm{m}$, SCH ${ }_{2} \mathrm{CHH}$), 2.03 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.4$ and 4.6, 2-H), 2.04-2.11 (1 H $\mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHH}$), 2.25 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.4$ and $8.4,2-\mathrm{H}$), 2.35-2.45 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.73-2.86 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$), $2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$, $\left.\mathrm{ArCH}_{2}\right), 3.33(1 \mathrm{H}, \mathrm{dd}$, J 11.4 and $9.5, \mathrm{OCH} \mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{dd}$, J 11.4 and $4.8, \mathrm{OCHH}), 3.63(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.1$ and 6.2 , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.98\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6\right.$ and $\left.7.2, \mathrm{CHS}_{2}\right), 5.82(1 \mathrm{H}, \mathrm{brt}$, J 6.2, NH), 7.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1, \mathrm{ArH}$), $7.13,7.21,7.38$ and 7.60 (each 1 H , each t, J each $8.1,4 \times \mathrm{ArH})$ and $8.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 420.1883\left(\mathrm{M}^{+}, \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right.$ requires 420.1883).

(2R , 3S)-3-[(1,3-D ithian-2-yl)methyl]-2-ethyl-4-\{N-[2-(indol-3yl)ethyl]carbamoyl\}butyl (R)-3,3,3-trifluoro-2-methoxy-2phenyIpropionate 17

To a stirred solution of the alcohol $16(1.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, (R)-(+)-3,3,3-trifluoro-2-methoxy-2-phenylpropionic acid (9.5 $\mathrm{mg}, 0.040 \mathrm{mmol}$) and 4-dimethylaminopyridine ($0.5 \mathrm{mg}, 0.004$ mmol) in dry dichloromethane ($2 \mathrm{~cm}^{3}$) cooled with ice was slowly added a solution of dicyclohexylcarbodiimide ($6.7 \mathrm{mg}, 0.032$ mmol) in dry dichloromethane ($1 \mathrm{~cm}^{3}$). A fter the mixture had been stirred for 12 h at room temperature it was evaporated and the residue was taken up into diethyl ether. The mixture was filtered through Celite and evaporation of the filtrate gave a residue, which was chromatographed on silica gel. Elution with ethyl acetate-hexane (3:7) yielded the ester $\mathbf{1 7}$ as an oil (2.1 mg , $82 \%), v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3540(\mathrm{NH}), 1758$ (ester) and 1661 (amide); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{Me}\right.$ e, 1.16-1.25 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{CHH}$), 1.25-1.34 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{CHH}$), 1.46 (1 H , ddd, $\mathrm{J} 14.0,8.8$ and $4.9, \mathrm{~S}_{2} \mathrm{CH} \mathrm{CH}$ H), 1.68 (1 H , ddd, J 14.0, 8.8 and 4.0, $\mathrm{S}_{2} \mathrm{CHCHH}$), 1.68-1.73 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 1.77-1.88 ($1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SCH}_{2} \mathrm{CHH}\right), 1.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and $7.8,4-\mathrm{H}), 2.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.2 and $5.8,4-\mathrm{H}$), 2.05-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}$ H), 2.30-2.46 (1 H, m, 3-H), 2.75-2.86 (4 H, m, $2 \times$ SCH $_{2}$), $2.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9$, ArCH_{2}), 3.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), $3.49-3.56(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H N), 3.58-$ $3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHN}), 3.89\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8\right.$ and $\left.4.9, \mathrm{CHS}_{2}\right), 4.08$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$ and $4.8,1-\mathrm{H}$), $4.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$ and 7.3 , 1-H), 5.57-5.64 (1 H, m, N H), 7.04 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7, \mathrm{ArH}$), 7.14 (1 H, brt, J 7.4, ArH), 7.21 (1 H, brt, J 7.4, ArH), 7.20-7.24 (1 H m, ArH), 7.34-7.46 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}$), 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 7.6, \mathrm{ArH}), 7.61(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 7.6$, ArH) and 8.03 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); m/z (EI) 636.2274 (${ }^{+}$, $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires 636.2303).
(-)-(3S,4R)-4-tert-B utyldimethylsiloxymethyl-3-[(1,3-dithian-2-yl)methyl]-N-[2-(indol-3-yl)ethyl]hexanamide 18
A mixture of the alcohol 16 ($17.2 \mathrm{mg}, 0.0409 \mathrm{mmol}$), tertbutyldimethylsilyl chloride ($10.3 \mathrm{mg}, 0.0686 \mathrm{mmol}$), $4-$ dimethylaminopyridine ($1.0 \mathrm{mg}, 0.0082 \mathrm{mmol}$) and triethylamine ($0.024 \mathrm{~cm}^{3}, 0.172 \mathrm{mmol}$) in dichloromethane ($2 \mathrm{~cm}^{3}$) was stirred for 1 h at room temperature. A fter dilution with dichloromethane, the mixture was washed with brine, dried and evapor-
ated. Silica gel chromatography of the residue with ethyl acetate-hexane ($1: 4$) as eluent afforded the silyl ether 18 as an oil ($18.6 \mathrm{mg}, 85 \%$), $[a]_{D}^{23}-10.1$ ($\mathrm{c} 0.846, \mathrm{CHCl}_{3}$) $\left[\right.$ lit. ${ }^{10}[a]_{D}^{25}-6.2$ $\left(\mathrm{CHCl}_{3}\right)$]; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3540(\mathrm{NH})$ and 1654 ($\mathrm{C}=0$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.02\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}\right.$), $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 0.89(3$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 1.14-1.29\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.47-1.54(1 \mathrm{H}, \mathrm{m}$, 4-H), 1.66 (1 H, ddd, J 14.1, 8.1 and 5.7, CH CH HCH), 1.76 (1 H, ddd, J 14.1, 8.8 and 4.9, CHCHHCH), 1.79-1.88 ($1 \mathrm{H}, \mathrm{m}$ $\left.\mathrm{SCH}_{2} \mathrm{CHH}\right), 2.05-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHH}\right), 2.09(1 \mathrm{H}$, dd, J 14.2 and $6.9,2-\mathrm{H}), 2.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and $7.0,2-\mathrm{H}$), 2.36$2.43(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.74-2.87\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}\right), 2.98(2 \mathrm{H}$, J 6.8, ArCH 2), $3.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $7.5, \mathrm{OCH}$ H), $3.56(1 \mathrm{H}$, dd, J 10.5 and $4.8, \mathrm{OCHH}$), $3.55-3.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.02(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8$ and 5.7, $\mathrm{CH} \mathrm{S}_{2}$), 5.82-5.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 7.07 (1 H , d, J 2.0, ArH), $7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.3, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.3$, ArH), 7.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH}$), $7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH})$ and $8.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 534.2736\left(\mathrm{M}+\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}\right.$ requires 534.2771), the spectral data for which were consistent with those of the authentic compound. ${ }^{10}$

(-)-(1'R ,2R,12bS)-2-[1-(H ydroxymethyl)propyl]

1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-4-one 19

A mixture of the alcohol 16 ($19.5 \mathrm{mg}, 0.0464 \mathrm{mmol}$), methyl iodide ($0.30 \mathrm{~cm}^{3}, 0.48 \mathrm{mmol}$) and acetonitrile-water ($4: 1 ; 0.5$ cm^{3}) was stirred for 60 h at room temperature and then poured into 10% aqueous ammonia. The mixture was thoroughly extracted with dichloromethane. The combined extracts were dried (potassium carbonate) and evaporated to give a residue which was subjected to chromatography on silica gel. Elution with ethyl acetate-dichloromethane ($4: 1$) afforded a $7: 1 \mathrm{mix}$ ture of two diastereoisomers as a powder ($7.2 \mathrm{mg}, 64 \%$). Further purification by HPLC using M icrosorb Si $(4.6 \times 250 \mathrm{~mm}, 5$ $\mu \mathrm{m}$) with ethyl acetate as eluent provided the major isomer 19 as a powder, $[a]_{D}^{30}-41.3$ (c $0.103, \mathrm{CHCl}_{3}$) $\left[\right.$ lit., ${ }^{10}[a]_{D}^{25}-21.7$ $\left(\mathrm{CHCl}_{3}\right)$]; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3470(\mathrm{NH}), 3350(\mathrm{OH})$ and 1620 ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.91\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 1.24-1.32 (1 H, m, CHHMe), 1.26 ($1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}$), 1.33-1.40 ($1 \mathrm{H}, \mathrm{m}, 2-$ CH), 1.44-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ H e), 1.83-1.92 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 2.18 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 15.8,10.3$ and 5.7, 1-H), 2.30 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.0$ and $10.4,3-\mathrm{H}), 2.32-2.38(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 17.0$, 5.9 and 1.9, $3-\mathrm{H}$), 2.68-2.74 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 2.92-3.04 ($2 \mathrm{H}, \mathrm{m}, 6-$ and $7-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0$ and $5.0, \mathrm{CH} \mathrm{HOH}), 3.81(1 \mathrm{H}$, dd, J 11.0 and $3.8, \mathrm{CH}$ H OH), 4.94-4.98 ($1 \mathrm{H}, \mathrm{m}, 12 \mathrm{~b}-\mathrm{H}$), $5.00-$ $5.05(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0$, ArH), 7.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{ArH}$), 7.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{ArH}$) and 8.06(1 H, br s, NH); m/z (EI) $312.1820\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 312.1838), the spectral data for which were consistent with those of the authentic compound. ${ }^{10}$

Acknowledgements

We are grateful for a grant-in-aid for scientific research on priority areas (M olecular Bases of Malaria Control; No . 08281201) from the M inistry of Education, Science, Sports and Culture of Japan. We are grateful to Professor T. Suzuki of A kita U niversity for the generous gift of the spectral data for compound 18. We are indebted to Mr K. K awamura, M s K . M ushiake, M sM.Suzuki, M sA. Satoh and M s Y. M aehashi of this institute for microanalyses, spectral measurements and the preparation of this paper.

References

1 M. Ihara, K. Y asui, N. Taniguchi, K . F ukumoto and T. K ametani, Tetrahedron L ett., 1988, 29, 4963; M . I hara, K . Y asui, N. Taniguchi and K . Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1990, 1469.
2 M. Ihara, F. Setsu, Y. Tokunaga, K . Fukumoto, Y. K ashiwagi and T. O sa, C hem. P harm. Bull., 1995, 43, 362; M . Ihara, A . K atsumata, F. Setsu, Y. Tokunaga and K. Fukumoto, J. Org. Chem., 1996, 61, 677.

3 M. Ihara, M. Takahashi, N. Taniguchi, K. Fukumoto and T. K ametani, J. C hem. Soc., C hem. C ommun., 1987, 619; M . Ihara, M . Takahashi, N. Taniguchi, K. Y asui, K. Fukumoto and T. K ametani, J. Chem. Soc., Perkin Trans. 1, 1989, 897.

4 M. Ihara, N. Taniguchi, K . Y asui and K . F ukumoto, J. Chem. Soc., Perkin Trans. 1, 1990, 2771.
5 Syntheses of racemic compounds according to the present route were published as a preliminary communication: N. Taniguchi, M . Ihara and K . Fukumoto, H eterocycles, 1992, 33, 545.
6 M. Ihara, N. Taniguchi, K . N oguchi, K. Fukumoto and T. K ametani, J. Chem. Soc., C hem. Commun., 1986, 573; J. Chem. Soc., Perkin Trans. 1, 1988, 1277.
7 G. M. T. Robert, A. A hond, C. Poupat, P. Potier, C. Jollés and A . Jousselin, J. N at. P rod., 1983, 46, 694.

8 S. Takano, S. H atakeyama and K. Ogasawara, J. Am. Chem. Soc., 1979, 101, 6414; S. Takano, M. Takahashi and K. Oagasawara, J. A m. C hem. Soc., 1980, 102, 4282.

9 S. R am and L. D. Spicer, Tetrahedron Lett., 1987, 28, 515.
10 T. K ametani, T. Suzuki, E. Sato, M. Nishimura and K. Unno, J. C hem. Soc., C hem. C ommun., 1982, 1201.

11 There is a large discrepancy between the optical rotation obtained by the present work and the literature value The compound 19, previously reported, had been synthesised from labile (R)-1,2isopropylideneglyceraldehyde ${ }^{10}$

Paper 6/06952E
Received 10th O ctober 1996
A ccepted 15th O ctober 1996

